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Photopharmacology

Rewiring biology to
respond to light
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Retinal — Nature's photoswitch
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Azobenzene — A synthetic photoswitch
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Azologization of common pharmacophores (“Azosters®)
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Azosters - Examples
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Modalities of Photopharmacology
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Synthesis of azobenzenes — Azo coupling
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Synthesis of azobenzenes — Baeyer-Mills reaciton
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nature
neuroscience

Optical control of ion channels

Nat. Neurosci. 7, 1381-1386 (2004).

Light-activated ion channels for remote control of

neuronal firing

Matthew Banghart!?, Katharine Borges>?, Ehud Isacoff?, Dirk Trauner! & Richard H Kramer?

Neurons have ion channels that are directly gated by voltage,

ligands and temperature but not by light. Using structure-
based design, we have developed a new chemical gate that
confers light sensitivity to an ion channel. The gate includes
a functional group for selective conjugation to an engineered
K* channel, a pore blocker and a photoisomerizable
azobenzene. Long-wavelength light drives the azobenzene

Voltage-gated K* ion channel - Light-gated K+ ion channel

Many techniques exist for controlling neural activity, but they all
have considerable limitations. Traditional electrical and chemical
methods require invasive electrodes or chemical delivery systems
that cannot control patterns of activity in densely packed neural
tissue. Optical techniques utilizing caged neurotransmitters™® are
less invasive and can be more precise, but reversal of the effects of
the uncaged transmitter is limited by its diffusion kinetics. Recently,
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Background: Action potential (AP) firing in neurons
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Synthesis of MAL-AZO-QA

maleimide
azobenzene
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Design of SPARK (synth. photoisomerizable azobenzene-

regulated K+ ion channel)

= Site-selective conjugation to Cys via 1,4-Thiol-Michael-Addition (MAL)
= QA pore blocker for “SHAKER" K+ ion channels

= Dblocks pore only in stretched trans-AZO configuration (Adwai-aatrans = 17 A; AduaL-aacis = 10 A)

E422@{> Srn“% prgg

380 nm

500 nm

Max Planck Institute for Medical Research — Johnsson Lab 14



Reversible optical control of SPARK channels in oocytes
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Spectral sensitivity and photoconversion rates
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Controlling neuronal excitability with MAL-AZO-QA

Silencing of AP firing in neurons
upon illumination with 390 nm light
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Controlling neuronal excitability with MAL-AZO-QA
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- Non-invasive and reversible control of AP firing in living neurons with spatial and temporal control
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Potential application & Outlook

= Spatiotempral precision allows dissection of neuronal networks in vitro and in vivo

» Strategy may be extended to ionotropic (ligand-gated ion channels) or metabrotoic receptors by
replacement of QA with corresponding ligand

= Vision Restoration: conferring light-sensitivity on endogenous neuronal ion channels to restore retinal
light response in mice (e.g. Sci Rep 7, 45487 (2017). https://doi.org/10.1038/srep45487)
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Further Reading

» https://pubs.acs.org/doi/abs/10.1021/acs.accounts.5b00129

» https://pubs.acs.org/doi/10.1021/cr300179f

» https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00037
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Chemogenetic control of nanobodies
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GFP fusion proteins are abundant

€ >addgene

The nonprofit plasmid repository

5696 Results for: GFP
938 Results for: YFP

Yeast GFP Clone Collection

ThermoFisher
SCIENTIFIC

4159 EGFP-tagged
open reading frames

PDBID: 3K1K

22



The “enhancer” nanobody binds GFP

wtGFP absorption spectra
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PDBID: 3K1K Nat. Struct. Mol. Biol. 2010, 17, 133-38.
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Bacterial dihydrofolate reductase (DHFR) can be circularly permutated

Trimethoprim (TMP)

G; linker

PDBID: 1RH3 24



LAMAs: Ligand-based Affinity Modulator of Antibody-fragments
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The LAMA is reversibly turned “on” and “off”
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Structure of “enhancer” nanobody bound to GFP
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Steric clash between GFP and cpDHFR in LAMA (GFP LAMAgg)
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LAMASs can localize GFP fusion proteins in live cells
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Mislocating Mad2L1 to the mitochondria: Mitotic Checkpoint Override
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Chemogenetic control of nanobodies

LAMA: “ON” LAMA: “OFF”

 GFP LAMAs reversibly localize GFP-fusion proteins in live cells with small molecules

 cpDHFR can be used as an affinity modulator for nanobodies
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